Interfacing MATLAB and ROS

By Yanliang Zhang (Ph.D.)
MathWorks Robotics Product and Marketing Manager
Yanliang.Zhang@mathworks.com

ICRA 2014, Hong Kong
6/5/2014
Three of the most critical questions that robotics engineers and scientists need to answer are:

- How do I design and simulate a robot?
- How do I prototype and test algorithms for my robot?
- How do I connect to my robot platforms and peripherals?

MATLAB® and Simulink® can help answer these questions, and accelerate and streamline the design, prototyping, and verification of robotics applications.
Why?
MATLAB/Simulink Integration with Robots

MATLAB/Simulink

MATLAB Non-target API
Simulink Non-target Lib
Simulink Target
ROS

Any Robot Running ROS
What Is ROS?

Robot Operating System (ROS) is a BSD-licensed, non real-time, software framework for robot development, providing operating system-like functionalities like hardware abstraction, device drivers, libraries, visualizers, message-passing, package management.
Existing Packages (Libraries):

There are many ready-to-use packages (using ROS integration and messaging conventions) which contain vetted implementation of common algorithms for each area of robotics:

- Stereo vision
- SLAM
- Control
- Navigation
- Motion Planning
- Manipulation
- Grasping
- Motion understanding
- Mobile robotics
- Perception
- Object Identification
- Segmentation
- Face recognition
- Natural Language
- Gesture recognition
- Motion tracking
- Structure from motion (SFM)
- Egomotion

The possibility of reusing software without having to rewrite it is one of the main drivers of ROS adoption within both universities and commercial companies.
ROS on Robots

Click Here

- Fraunhofer IPA Care-O-bot
- Videre Erratic
- TurtleBot
- Aldebaran Nao
- Lego NXT
- Shadow Hand
- Willow Garage PR2
- iRobot Roomba
- Robotnik Guardian
- Merlin miabotPro
- AscTec Quadrotor
- CoroWare Corobot
- Clearpath Robotics Husky
- Clearpath Robotics Kingfisher
- Festo Didactic Robotino
- Gostai Jazz
- Neobotix mp-500
- Neobotix mpo-500
- Neobotix mpo-700
- ROS-Industrial
- Robotnik Modular Arm
ROS on Robots

Click Here

Robotnik Summit

Adept MobileRobots Pioneer family (P3DX, P3AT, PeopleBot, PowerBot, AmigoBot)

Robotnik Summit XL

Adept MobileRobots Seekur family (Seekur, Seekur Jr.)

Eddiebot

AMIGO

Allegro Hand SimLab

Tuip

Robonaut 2

Adept MobileRobots PatrolBot family (PatrolBot, GuiaBot)

Reem
ROS Used in Teaching

Pretty much *any* university robotics lab these days is using ROS, and many are also contributing code back to it, including top institutions. Some of the top contributors:

- Stanford
- MIT
- CMU
- Brown University
- CCNY
- UT Austin/ART
- SIUE
- Rice University
- Penn
- TUM
- Uni Freiburg

- WPI
- Cornell
- Georgia Tech
- USC
- Columbia University
- Imperial College (London)
- UT Austin
- Washington University St Louis
- University of Maryland
- University of Colorado at Boulder
How?
Download and Install MATLAB ROS I/O:
www.mathworks.com/ROS
A Simple Example (All Codes inside MATLAB)

- Create (Connect to) a ROS Master

  ```matlab
  >> roscore = rosmatlab.roscore(11311);
  ```

- Create a ROS node

  ```matlab
  >> node = rosmatlab.node('NODE', roscore.RosMasterUri);
  ```

- Create a Publisher

  ```matlab
  >> publisher = rosmatlab.publisher('TOPIC', 'std_msgs/String', node);
  ```

- Add a Subscriber

  ```matlab
  >> subscriber = rosmatlab.subscriber('TOPIC', 'std_msgs/String', 1, node);
  ```

- Bind Functions to Subscriber

  ```matlab
  >> subscriber.setOnNewMessageListeners({@function1, @function2});
  ```
A Simple Example (All Codes inside MATLAB)

Now you can use different MATLAB toolboxes

```matlab
function function1(message)
    disp(char(message.getData()));
end

function function2(message)
    disp(sprintf('Message received: %s',datestr(now)));
end
```
A Simple Example (All Codes inside MATLAB)

- Create a new message for use by the publisher

 \[
 \text{msg} = \text{rosmatlab.message('std_msgs/String', node)};
 \]

- Set the data field of the std_msgs/String message

 \[
 \text{msg.setData(sprintf('Message created: %s', datestr(now))});
 \]

- Publish the Message

 \[
 \text{publisher.publish(msg)};
 \]
Demonstration: Ball Tracking on Gazebo and Real TurtleBot
Husky + ROS I/O Code Example

- Step by Step instructions can be found on Clearpath’s BLOG: http://www.clearpathrobotics.com/blog/ros-for-matlab/

- Or Google: **HUSKY MATLAB**

```matlab
function Husky_CMD_VEL

% Ilya Baranov for Clearpath Robotics
% Connect to the IP address of the Husky
node = rosmatlab.node('NODE', '10.28.0.226', 11311);

% Create Subscriber to ROS TWIST Message, called husky/cmd_vel
% buffer size = 1
subscriber = rosmatlab.subscriber('husky/cmd_vel', 'geometry_msgs/Twist',
                                         'buffer_size', 1);

% When message is received, call function to show value
subscriber.setOnNewMessageListeners(@(display_vel)

% Create a publisher for the ROS TWIST message, called husky/cmd_vel
publisher = rosmatlab.publisher('husky/cmd_vel', 'geometry_msgs/Twist';

% Set linear velocity components of command
msgLin = rosmatlab.message('geometry_msgs/Vector3', node);
msgLin.x = 0;
msgLin.y = 0;
msgLin.z = 0;
```
Join us at IROS 2014, Chicago, Sept. 14–18, 2014

Workshops & Tutorials

Morning sessions are 8:30 AM until 12:00 PM, with a coffee break at 10:00 AM. Afternoon sessions are 1:30 PM until 5:00 PM, with a coffee break at 3:00 PM.

Sunday, September 14, Half-day Workshops and Tutorials

<table>
<thead>
<tr>
<th>Title</th>
<th>Organizers</th>
</tr>
</thead>
<tbody>
<tr>
<td>An Open-source Recipe for Teaching (and Learning) Robotics with a Simulator: Setup a Laptop in 5 Minutes, Write a Control, Navigation, Vision or Manipulation Program in 100 Lines of Code (Morning Session)</td>
<td>Renaud Detry*, Peter Corke, Marc Andreas Freese</td>
</tr>
<tr>
<td>Taxonomies of Interconnected Systems: Topology in Distributed Robotics (Morning Session)</td>
<td>Ryan Williams*, Andrea Gasparri, Gaurav Sukhatme</td>
</tr>
<tr>
<td>How to Use MATLAB-ROS Interface to Prototype Robotics Algorithms for ROS-powered Robots (Afternoon Session)</td>
<td>Yanliang Zhang</td>
</tr>
</tbody>
</table>